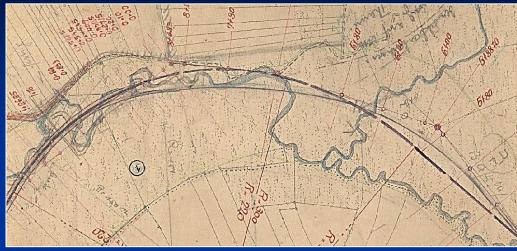
BachreNATURierung und Hochwasserrückhalt

Ein Renaturierungsverfahren für überflutbare Auen Erkenntnisse aus 15 Jahren

Vortrag von Ralf Worm, LEV Ostalbkreis beim DVL-Online-Fachforum "Wasserrückhalt" am 11.11.2020

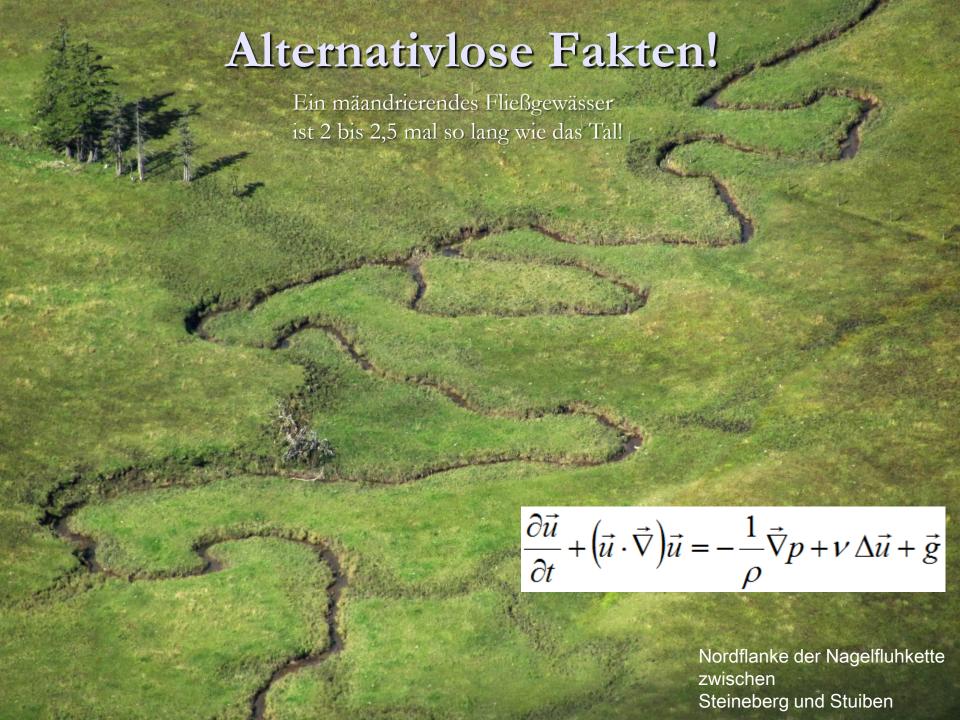
Gliederung


- Wie funktionieren Fließgewässer überhaupt?
- Wie werden diese Prinzipien baulich umgesetzt?
- Welche Probleme gilt es wie zu managen?

Teil 1: Linienführung

Spurensuche

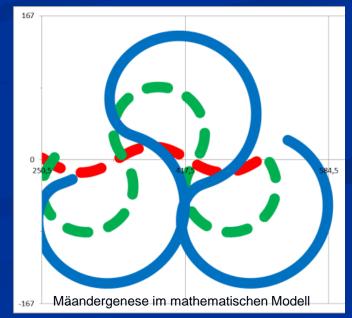
Begradigung in der Theorie



Begradigung in der Praxis

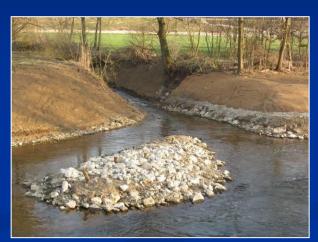
Kleine **Bäche mäandrieren** noch bei über 3 % Talgefälle!

Mäander: Entstehung und Lebenszyklus



Leitsätze:

- Mäanderbildung ist kein
 Zufallsereignis, sondern ein
 durch Wirbeloszillation
 hervorgerufener
 physikalischer Prozess.
- Eine vorhandener Aue (fehlendes Quergefälle) und eine statische Deckschicht sind hinreichende Bedingungen für die Mäandrierung.
- Dies gilt weltweit.

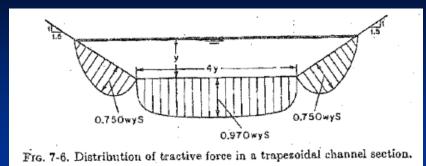

Teil 2: Querprofil

"Bacharchitektur"

"Alpenblick"

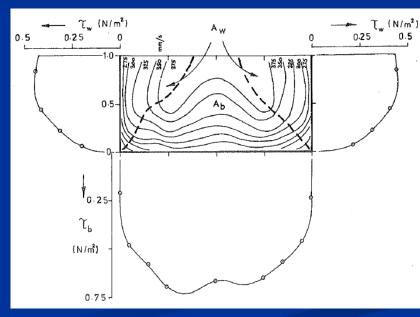
"Öko-Deko"

"Baustahlphantasien"

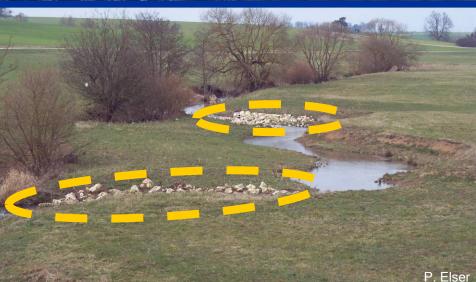

"Je breiter desto gscheiter"

"Mosel"

Spurensuche



Ven Te Chow 1959



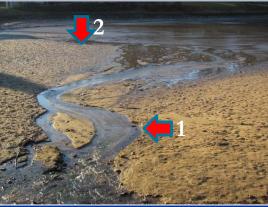
Knight et al. ca. 1980

Alternativlose Fakten!

- Querschnittsaufweitung statt -verkleinerung
- i.d.R. keine Sohlanhebung => Sekundärauenproblem
- Große Erdbewegungen => hohe Kosten
- Abgeflachte Ufer:
 Keine Schutz-/Nistfunktion der Böschungen

Querprofil: Eigendynamische Entwicklung!!

Rems bei Essingen (naturnah)



Sechta bei Bopfingen (9 Monate alt)

Teil 3: Dimensionierung

Entleerter Spitzensägweiher, Rosenberg

Empirische Ermittlung

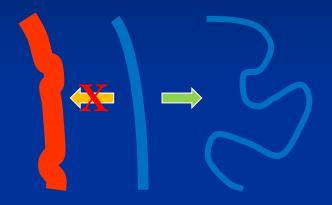
(vgl. Datensammlung bei Harnischmacher 2002)

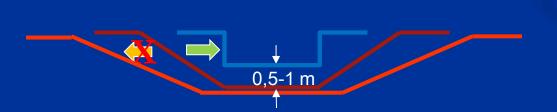
 $\Lambda_{\rm M} \approx 11 \ B$

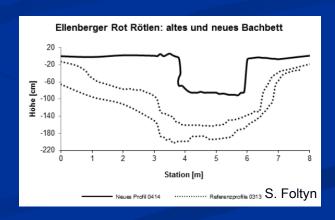
Teil 4: Geschiebe und Totholz

10 bis 20 cm Kies und bis zu 2 Bäume pro 100 m

Teil 5: Hochwasser




Bilanz = Renaturierungsziel:


- Erreichen größtmöglicher Naturnähe (im Rahmen der Möglichkeiten).
- Daher keine menschdefinierte Maximierung von Vielfalt und keine rein naturästhetischen Formgebungen.
- Dynamik zulassen!! (Rechteckprofil, Mindesttiefe)
- Was sich erst in einem Jahrhundert selbst entwickelt, wird vorgegeben.
- Was sich in einem Jahrzehnt selbst entwickelt, wird nicht vorgegeben.
- Hochwasser zulassen!!
 (Gefälle + Querschnitt reduzieren, keine Sekundäraue)

Und schon kann's losgehen

"Vollrenaturierung"

Keine Sekundäraue, sondern den Bach zurück in die Aue! Die Baukosten sind hierbei um ein Mehrfaches niedriger!

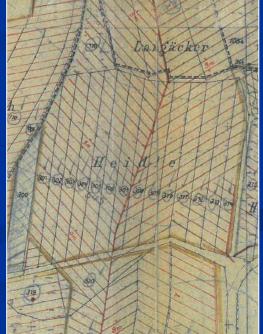
Renaturierungsprinzip

Markieren der Renaturierungsstrecke

Bau des Rechteckprofils

Dammschüttung => "Altarme"

Geschiebe – Totholz - Drainagen



Näher betrachtet

Anm.: hier klettert der Frosch raus.

So entstanden 15 km naturnächste Bäche

Fertiggestellte Projekte 2005 bis 2017

1.	Eichbach bei Ellwangen-Neunstadt	370 m
2.	Sechta bei Tannhausen	2.500 m
3.	Schlierbach bei Tannhausen	1.500 m
4.	Schelmenklingenbach bei Lauchheim-Röttingen	410 m
5.	Ellenberger Rot bei Ellwangen-Hardt	1.200 m
6.	Gangolfsbach bei Lauchheim-Röttingen	350 m
7.	Sixenbach bei Ellwangen-Schleifhäusle	1.500 m
8.	Sechta bei Bopfingen-Oberdorf	5.000 m
9.	Glasbach bei Rosenberg-Spitzensägmühle	600 m
10.	Ellenberger Rot bei Ellwangen-Röhlingen	1.000 m
11.	Häselesbronnenbach bei Rosenberg-Ohrmühle	100 m
12.	Stelzenbach Ellwangen	100 m
13.	Schrezheimer Bach bei Ellwangen-Schrezheim	250 m
	Summe ca	15 000 m

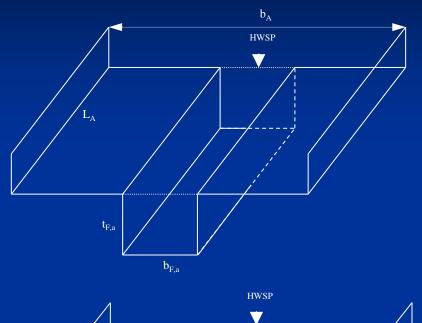
Summe ca. 15.000 m

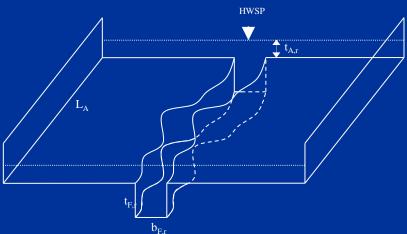
Gesamtbaukosten knapp 500.000 €, d.h. ca. 30 € pro Meter Bach Finanzierung über LPR, Naturschutzfonds, Ausgleich

Und dann plötzlich sowas ...

Gut, dass die gesamte Aue in öffentlichem Eigentum ist!!

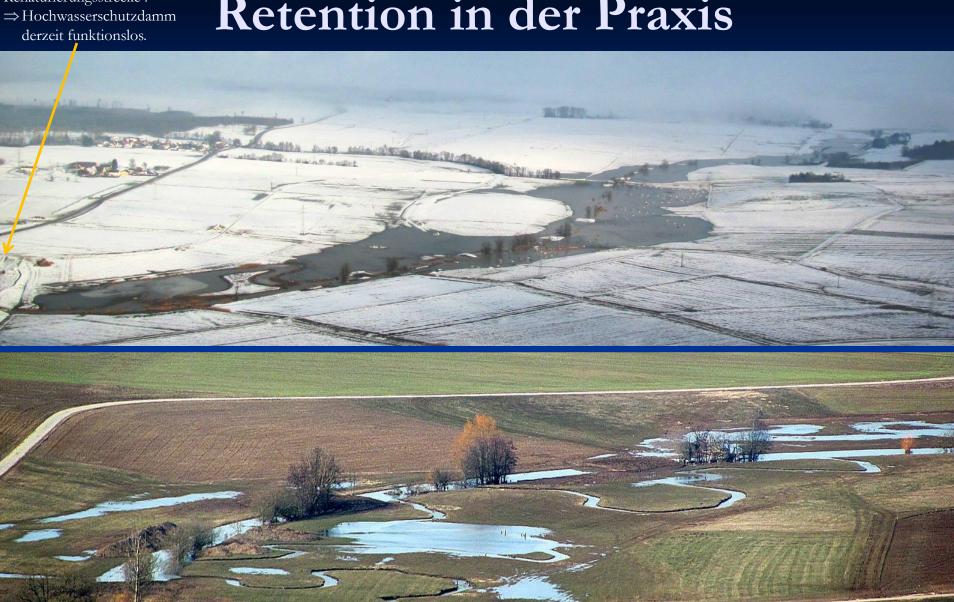
RENATURIERT HOCHWASSER





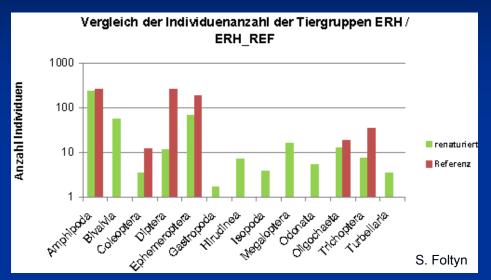
Retention in der Theorie

Abfluss Q = Querschnitt A× mittl. Fließgeschwindigkeit U


mit
$$U = k_{\text{St}} \times I^{1/2} \times T^{2/3}$$

Bsp. Sechta (Tallänge 2,1 km):

- Renaturierungsretention ca. 130.000 m³
- Peakverzögerung ca. 2 Stunden


Retention entlang der gesamten Renaturierungsstrecke!

Retention in der Praxis

Fluttümpel

=> ReNATURierung = Ökologie + Hochwasserrückhalt

=> Hoffentlich ist bald Schluss mit solchen Beispielen!

Dank an die Projektpartner

- Wasserverband Obere Jagst
- Wasserverband Sechta-Eger
- Untere Naturschutzbehörde
- Untere Wasserbehörde
- Untere Flurneuordnungsbehörde
- Stadt Ellwangen
- Stadt Bopfingen
- Stadt Lauchheim
- Gemeinde Rosenberg
- Amtl. Fischereiaufseher
- Regierungspräsidium Stuttgart
- Stiftung Naturschutzfonds
- NABU Aalen
- NABU Ellwangen

Bericht zu beziehen beim LEV Ostalbkreis.

... und an die Zuhörer!